Received 19 November 2004 Accepted 17 December 2004

Online 24 December 2004

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Tetrakis(1,2-diaminobenzene)- $\kappa^2 N$; $\kappa^4 N$,N'-nickel(II) dichloride

W. G. Piyal Ariyananda and Richard F. Norman*

Chemistry Department, CNSB-210, University of Louisiana at Monroe, Monroe, LA 71209, USA

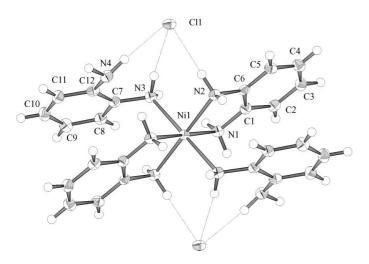
Correspondence e-mail: rnorman@ulm.edu

Key indicators

Single-crystal X-ray study T = 100 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.062 wR factor = 0.110Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title complex, [Ni(C₆H₈N₂)₄]Cl₂, consists of a centrosymmetric octahedral six-coordinate nickel(II) coordination complex cation and two chloride ions. The Ni atom sits on a crystallographic inversion center. Two of the 1,2-diaminobenzene ligands are chelating and the other two are monodentate. The chelating ligands define an equatorial plane and the monodentate ligands are axially *trans*. In addition to one hydrogen bond between the non-coordinated N atom of the monodentate ligand and an adjacent metal complex, there is extensive hydrogen bonding to the chloride ions.


Comment

We are currently investigating Ni^{II} complexes of the form $[\{NiL_4X\}_2]^{2^+}$, where X is either Cl^- or Br^- and L_4 represents some combination of ligands to provide four N-atom donors. These dimeric complexes exhibit ferromagnetic coupling between the metal centers, with the coupling dependent upon the sum of the Ni-X bond lengths (Tong *et al.*, 1999, 2000). When we have attempted to make complexes using two bidentate ligands as L_4 , we have often followed a modification of State's (1960) procedure in which a tris(bidentate chelate)nickel(II) complex is reacted with the appropriate NiX_2 hydrate (Xie, 2000; Ariyananda, 2003). During an attempted preparation of a crystalline form of a tris(1,2-diaminobenzene)nickel(II) complex, the title compound, (I), was obtained.

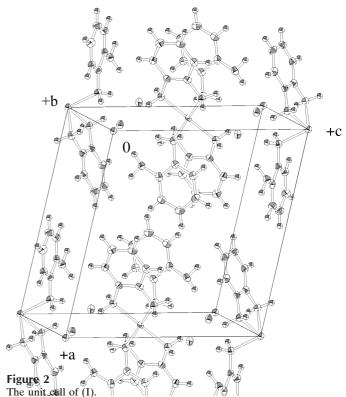
The title compound has been synthesized previously and some of its physical properties reported (Marks *et al.*, 1967); however, its structure was not reported. The cationic portion

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 1 View of the symmetry-expanded molecule of (I), with displacement ellipsoids drawn at the 50% probability level.

along with chloride counter-ions and additional 1,2-diaminobenzene has been reported (Elder *et al.*, 1974) and the distances and angles within the cationic portion of the two structures agree within experimental error.


The structure consists of a centrosymmetric octahedral six-coordinate nickel(II) coordination complex cation and two chloride ions. The Ni atom sits on a crystallographic inversion center. Two of the 1,2-diaminobenzene ligands are chelating and the other two are monodentate. The chelating ligands define an equatorial plane and the monodentate ligands are axially *trans*. Seven of the eight NH groups donate an H atom for hydrogen bonding. With the exception of N1—H1, these hydrogen bonds are all to the chloride counter-ions. N1—H1 donates to N4 of an adjacent cation. The eighth group (N4—H15) does not participate in a hydrogen bond; H15 has its closest approach to C3 in an adjacent cation at $(-x, y - \frac{1}{2}, \frac{3}{2} - z)$.

Experimental

Nickel(II) chloride hexahydrate (0.2382 g, 1.002 mmol) was dissolved in 10 ml of 5% aqueous methanol, heated to 328 K and stirred for 10 min, producing a green solution. 1,2-Diaminobenzene (0.4320 g, 3.996 mmol) was added, giving a greenish purple solution. Purple 'flake-like' crystals appeared in a few minutes and were recrystallized from 5% aqueous methanol. Absorption spectrum (H₂O) $\lambda_{\rm max}$ ($\varepsilon_{\it M}$): 364.6 (12.3), 524 (5.0), 737 (sh), 971 (6.3). ¹H NMR (300 MHz, D₂O) 13, 14 and 16.5.

Crystal data

er your auto	
$[Ni(C_6H_8N_2)_4]Cl_2$	$D_x = 1.468 \text{ Mg m}^{-3}$
$M_r = 562.18$	Mo K α radiation
Monoclinic, $P2_1/c$	Cell parameters from 2903
a = 12.8062 (7) Å	reflections
b = 8.1242 (4) Å	$\theta = 2.5 - 27.5^{\circ}$
c = 12.4333 (8) Å	$\mu = 1.00 \text{ mm}^{-1}$
$\beta = 100.610 \ (2)^{\circ}$	T = 100 K
$V = 1271.45 (11) \text{ Å}^3$	Parallelepiped, violet
Z = 2	$0.15 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler ω scans with κ offsets Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.854$, $T_{\max} = 0.905$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.110$ S = 1.02 2077 reflections 161 parameters H atoms: see below 12286 measured reflections 2919 independent reflections 2077 reflections with $I > 3\sigma(I)$ $R_{\rm int} = 0.032$ $\theta_{\rm max} = 27.5^{\circ}$ $h = -16 \rightarrow 16$ $k = -10 \rightarrow 10$ $l = -16 \rightarrow 15$

 $w = 1/[\sigma^2(F_o) + 0.00140625|F_o|^2]$ $(\Delta/\sigma)_{\max} < 0.001$ $\Delta\rho_{\max} = 0.85 \text{ e Å}^{-3}$ $\Delta\rho_{\min} = -0.68 \text{ e Å}^{-3}$ Extinction correction: Zachariasen (1967)
Extinction coefficient: 0.69 (3)

Table 1 Selected geometric parameters $(\mathring{A}, {}^{\circ})$.

Ni1-N1	2.100(2)	N3-C7	1.431 (4)
Ni1-N2	2.108(2)	N4-C12	1.411 (4)
Ni1-N3	2.220(2)	C1-C6	1.393 (4)
N1-C1	1.453 (4)	C7-C12	1.409 (4)
N2-C6	1.451 (4)		
$N1-Ni1-N1^i$	180	$N3-Ni1-N3^{i}$	180
N1-Ni1-N2	82.21 (9)	Ni1-N1-C1	110.2 (2)
$N1-Ni1-N2^{i}$	97.79 (9)	Ni1-N2-C6	110.1 (2)
N1-Ni1-N3	89.42 (8)	Ni1-N3-C7	121.1 (2)
$N1-Ni1-N3^{i}$	90.58 (8)	N1 - C1 - C6	118.3 (2)
$N2-Ni1-N2^{i}$	180	N2 - C6 - C1	118.2 (2)
N2-Ni1-N3	89.18 (8)	N3-C7-C12	121.3 (2)
N2-Ni1-N3 ⁱ	90.82 (8)		

Symmetry code: (i) -x, -y, 2-z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ \cdots A
$N1-H1\cdots N4^{i}$	0.95	2.19	3.021 (3)	145
N1-H2···Cl1 ⁱⁱ	0.95	2.69	3.313 (2)	124
N2-H7···Cl1 ⁱⁱⁱ	0.95	2.62	3.414(2)	141
N2-H8···Cl1	0.95	2.35	3.302 (2)	176
N3-H9···Cl1	0.95	2.41	3.351(2)	174
N3-H10···Cl1iv	0.95	2.39	3.306(2)	161
N4−H16···Cl1	0.97	2.29	3.254 (3)	173

Symmetry codes: (i) -x, -y, 2-z; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iv) $-x, \frac{1}{2}+y, \frac{3}{2}-z$.

Atoms H15 and H16, the H atoms associated with N4 were found in difference maps but not refined (N—H = 0.972 and 0.967 Å). All other H atoms were placed in calculated positions (C—H = N—H = 0.95 Å). All of the H atoms are assigned $U_{\rm iso}({\rm H})$ values 1.2 times larger than $U_{\rm eq}$ of the atoms to which they are bound.

Data collection: *COLLECT* (Nonius 2000); cell refinement: *DENZO* and *SCALEPACK* (Version 1.96.2; Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1993); program(s) used to refine structure: *TEXSAN* for Windows (Version 1.06; MSC, 1999); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN* for Windows.

We thank Frank Fronczek for the data collection and the Louisiana Board of Regents Support Fund for financial support.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Ariyananda, W. G. P. (2003). MS thesis, University of Louisiana at Monroe, USA.

Elder, R. C., Koran, D. & Mark, H. B. Jr (1974). *Inorg. Chem.* 13, 1644–1649.
Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Marks, D. R., Phillips, D. J. & Redfern, J. P. (1967). J. Chem. Soc. A, pp. 1464– 1469.

Molecular Structure Corporation (1999). *TEXSAN for Windows*. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA. Nonius (2000). *COLLECT*. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.

State, H. M. (1960). *Inorganic Synthesis*, Vol. 6, edited by E. G. Rochow, pp. 198–201. New York: McGraw-Hill.

Tong, B., Chang, S.-C. & Norman, R. E. (1999). Acta Cryst. C55, 1236–1238.
Tong, B., Chang, S.-C., Carpenter, E. E., O'Connor, C. J., Lay, J. O. Jr & Norman, R. E. (2000). Inorg. Chim. Acta, 300–302, 855–861.

Xie, M. (2000). MS thesis, University of Louisiana at Monroe, USA. Zachariasen, W. H. (1967). *Acta Cryst.* **23**, 558–564.